Abstract:Turbulence parametrizations will remain a necessary building block in kilometer-scale Earth system models. In convective boundary layers, where the mean vertical gradients of conserved properties such as potential temperature and moisture are approximately zero, the standard ansatz which relates turbulent fluxes to mean vertical gradients via an eddy diffusivity has to be extended by mass flux parametrizations for the typically asymmetric up- and downdrafts in the atmospheric boundary layer. In this work, we present a parametrization for a dry convective boundary layer based on a generative adversarial network. The model incorporates the physics of self-similar layer growth following from the classical mixed layer theory by Deardorff. This enhances the training data base of the generative machine learning algorithm and thus significantly improves the predicted statistics of the synthetically generated turbulence fields at different heights inside the boundary layer. The algorithm training is based on fully three-dimensional direct numerical simulation data. Differently to stochastic parametrizations, our model is able to predict the highly non-Gaussian transient statistics of buoyancy fluctuations, vertical velocity, and buoyancy flux at different heights thus also capturing the fastest thermals penetrating into the stabilized top region. The results of our generative algorithm agree with standard two-equation or multi-plume stochastic mass-flux schemes. The present parametrization provides additionally the granule-type horizontal organization of the turbulent convection which cannot be obtained in any of the other model closures. Our work paves the way to efficient data-driven convective parametrizations in other natural flows, such as moist convection, upper ocean mixing, or convection in stellar interiors.
Abstract:Recurrent neural networks are machine learning algorithms which are suited well to predict time series. Echo state networks are one specific implementation of such neural networks that can describe the evolution of dynamical systems by supervised machine learning without solving the underlying nonlinear mathematical equations. In this work, we apply an echo state network to approximate the evolution of two-dimensional moist Rayleigh-B\'enard convection and the resulting low-order turbulence statistics. We conduct long-term direct numerical simulations in order to obtain training and test data for the algorithm. Both sets are pre-processed by a Proper Orthogonal Decomposition (POD) using the snapshot method to reduce the amount of data. The training data comprise long time series of the first 150 most energetic POD coefficients. The reservoir is subsequently fed by the data and results in predictions of future flow states. The predictions are thoroughly validated by the data of the original simulation. Our results show good agreement of the low-order statistics. This incorporates also derived statistical moments such as the cloud cover close to the top of the convection layer and the flux of liquid water across the domain. We conclude that our model is capable of learning complex dynamics which is introduced here by the tight interaction of turbulence with the nonlinear thermodynamics of phase changes between vapor and liquid water. Our work opens new ways for the dynamic parametrization of subgrid-scale transport in larger-scale circulation models.