



Abstract:Partial Least Squares (PLS) is a widely used method for data integration, designed to extract latent components shared across paired high-dimensional datasets. Despite decades of practical success, a precise theoretical understanding of its behavior in high-dimensional regimes remains limited. In this paper, we study a data integration model in which two high-dimensional data matrices share a low-rank common latent structure while also containing individual-specific components. We analyze the singular vectors of the associated cross-covariance matrix using tools from random matrix theory and derive asymptotic characterizations of the alignment between estimated and true latent directions. These results provide a quantitative explanation of the reconstruction performance of the PLS variant based on Singular Value Decomposition (PLS-SVD) and identify regimes where the method exhibits counter-intuitive or limiting behavior. Building on this analysis, we compare PLS-SVD with principal component analysis applied separately to each dataset and show its asymptotic superiority in detecting the common latent subspace. Overall, our results offer a comprehensive theoretical understanding of high-dimensional PLS-SVD, clarifying both its advantages and fundamental limitations.
Abstract:The performance of spectral clustering relies on the fluctuations of the entries of the eigenvectors of a similarity matrix, which has been left uncharacterized until now. In this letter, it is shown that the signal $+$ noise structure of a general spike random matrix model is transferred to the eigenvectors of the corresponding Gram kernel matrix and the fluctuations of their entries are Gaussian in the large-dimensional regime. This CLT-like result was the last missing piece to precisely predict the classification performance of spectral clustering. The proposed proof is very general and relies solely on the rotational invariance of the noise. Numerical experiments on synthetic and real data illustrate the universality of this phenomenon.




Abstract:This work presents a comprehensive understanding of the estimation of a planted low-rank signal from a general spiked tensor model near the computational threshold. Relying on standard tools from the theory of large random matrices, we characterize the large-dimensional spectral behavior of the unfoldings of the data tensor and exhibit relevant signal-to-noise ratios governing the detectability of the principal directions of the signal. These results allow to accurately predict the reconstruction performance of truncated multilinear SVD (MLSVD) in the non-trivial regime. This is particularly important since it serves as an initialization of the higher-order orthogonal iteration (HOOI) scheme, whose convergence to the best low-multilinear-rank approximation depends entirely on its initialization. We give a sufficient condition for the convergence of HOOI and show that the number of iterations before convergence tends to $1$ in the large-dimensional limit.




Abstract:The article introduces an elementary cost and storage reduction method for spectral clustering and principal component analysis. The method consists in randomly "puncturing" both the data matrix $X\in\mathbb{C}^{p\times n}$ (or $\mathbb{R}^{p\times n}$) and its corresponding kernel (Gram) matrix $K$ through Bernoulli masks: $S\in\{0,1\}^{p\times n}$ for $X$ and $B\in\{0,1\}^{n\times n}$ for $K$. The resulting "two-way punctured" kernel is thus given by $K=\frac{1}{p}[(X \odot S)^{\sf H} (X \odot S)] \odot B$. We demonstrate that, for $X$ composed of independent columns drawn from a Gaussian mixture model, as $n,p\to\infty$ with $p/n\to c_0\in(0,\infty)$, the spectral behavior of $K$ -- its limiting eigenvalue distribution, as well as its isolated eigenvalues and eigenvectors -- is fully tractable and exhibits a series of counter-intuitive phenomena. We notably prove, and empirically confirm on GAN-generated image databases, that it is possible to drastically puncture the data, thereby providing possibly huge computational and storage gains, for a virtually constant (clustering of PCA) performance. This preliminary study opens as such the path towards rethinking, from a large dimensional standpoint, computational and storage costs in elementary machine learning models.