Abstract:We present a hybrid framework for adaptive insider-threat detection that tightly integrates multi-agent simulation (MAS), layered Security Information and Event Management (SIEM) correlation, behavioral and communication forensics, trust-aware machine learning, and Theory-of-Mind (ToM) reasoning. Intelligent agents operate in a simulated enterprise environment, generating both behavioral events and cognitive intent signals that are ingested by a centralized SIEM. We evaluate four system variants: a Layered SIEM-Core (LSC) baseline, a Cognitive-Enriched SIEM (CE-SIEM) incorporating ToM and communication forensics, an Evidence-Gated SIEM (EG-SIEM) introducing precision-focused validation mechanisms, and an Enron-enabled EG-SIEM (EG-SIEM-Enron) that augments evidence gating with a pretrained email forensics module calibrated on Enron corpora. Across ten simulation runs involving eight malicious insiders, CE-SIEM achieves perfect recall (1.000) and improves actor-level F1 from 0.521 (LSC) to 0.774. EG-SIEM raises actor-level F1 to 0.922 and confirmed-alert precision to 0.997 while reducing false positives to 0.2 per run. EG-SIEM-Enron preserves high precision (1.000 confirmed-alert precision; 0.0 false positives per run), slightly improves actor-level F1 to 0.933, and reduces detection latency (average TTD 10.26 steps versus 15.20 for EG-SIEM). These results demonstrate that cognitive context improves sensitivity, evidence-gated validation enables high-precision, low-noise detection, and pretrained communication calibration can further accelerate high-confidence insider threat identification.
Abstract:In this paper, we propose a Retrieval Augmented Generation (RAG) agent that maps natural language queries about research topics to precise, machine-interpretable semantic entities. Our approach combines RAG with Socratic dialogue to align a user's intuitive understanding of research topics with established Knowledge Organization Systems (KOSs). The proposed approach will effectively bridge "little semantics" (domain-specific KOS structures) with "big semantics" (broad bibliometric repositories), making complex academic taxonomies more accessible. Such agents have the potential for broad use. We illustrate with a sample application called CollabNext, which is a person-centric knowledge graph connecting people, organizations, and research topics. We further describe how the application design has an intentional focus on HBCUs and emerging researchers to raise visibility of people historically rendered invisible in the current science system.