Abstract:Partial-order plans in AI planning facilitate execution flexibility and several other tasks, such as plan reuse, modification, and decomposition, due to their less constrained nature. A Partial-Order Plan (POP) allows two actions with no ordering between them, thus providing the flexibility of executing actions in different sequences. This flexibility can be further extended by enabling parallel execution of actions in a POP to reduce its overall execution time. While extensive studies exist on improving the flexibility of a POP by optimizing its action orderings through plan deordering and reordering, there has been limited focus on the flexibility of executing actions concurrently in a plan. Execution concurrency in a POP can be achieved by incorporating action non-concurrency constraints, specifying which actions can not be executed in parallel. This work formalizes the conditions for non-concurrency constraints to transform a POP into a parallel plan. We also introduce an algorithm to enhance the plan's concurrency by optimizing resource utilization through substitutions of its subplans with respect to the corresponding planning task. Our algorithm employs block deordering that eliminates orderings in a POP by encapsulating coherent actions in blocks, and then exploits blocks as candidate subplans for substitutions. Experiments over the benchmark problems from International Planning Competitions (IPC) exhibit significant improvement in plan concurrency, specifically, with improvement in 25% of the plans, and an overall increase of 2.1% in concurrency.
Abstract:Partial-order plans in AI planning facilitate execution flexibility due to their less-constrained nature. Maximizing plan flexibility has been studied through the notions of plan deordering, and plan reordering. Plan deordering removes unnecessary action orderings within a plan, while plan reordering modifies them arbitrarily to minimize action orderings. This study, in contrast with traditional plan deordering and reordering strategies, improves a plan's flexibility by substituting its subplans with actions outside the plan for a planning problem. We exploit block deordering, which eliminates orderings in a POP by encapsulating coherent actions in blocks, to construct action blocks as candidate subplans for substitutions. In addition, this paper introduces a pruning technique for eliminating redundant actions within a BDPO plan. We also evaluate our approach when combined with MaxSAT-based reorderings. Our experimental result demonstrates a significant improvement in plan execution flexibility on the benchmark problems from International Planning Competitions (IPC), maintaining good coverage and execution time.
Abstract:Class Scheduling is a highly constrained task. Educational institutes spend a lot of resources, in the form of time and manual computation, to find a satisficing schedule that fulfills all the requirements. A satisficing class schedule accommodates all the students to all their desired courses at convenient timing. The scheduler also needs to take into account the availability of course teachers on the given slots. With the added limitation of available classrooms, the number of solutions satisfying all constraints in this huge search-space, further decreases. This paper proposes an efficient system to generate class schedules that can fulfill every possible need of a typical university. Though it is primarily a fixed-credit scheduler, it can be adjusted for open-credit systems as well. The model is designed in MiniZinc and solved using various off-the-shelf solvers. The proposed scheduling system can find a balanced schedule for a moderate-sized educational institute in less than a minute.
Abstract:Video captioning, i.e. the task of generating captions from video sequences creates a bridge between the Natural Language Processing and Computer Vision domains of computer science. Generating a semantically accurate description of a video is an arduous task. Considering the complexity of the problem, the results obtained in recent researches are quite outstanding. But still there is plenty of scope for improvement. This paper addresses this scope and proposes a novel solution. Most video captioning models comprise of two sequential/recurrent layers - one as a video-to-context encoder and the other as a context-to-caption decoder. This paper proposes a novel architecture, SSVC (Semantically Sensible Video Captioning) which modifies the context generation mechanism by using two novel approaches - "stacked attention" and "spatial hard pull". For evaluating the proposed architecture, along with the BLEU scoring metric for quantitative analysis, we have used a human evaluation metric for qualitative analysis. This paper refers to this proposed human evaluation metric as the Semantic Sensibility (SS) scoring metric. SS score overcomes the shortcomings of common automated scoring metrics. This paper reports that the use of the aforementioned novelties improves the performance of the state-of-the-art architectures.