Department of Electrical Engineering, Stanford University, Stanford, CA, USA
Abstract:The rapid advancement of medical technology has led to an exponential increase in multi-modal medical data, including imaging, genomics, and electronic health records (EHRs). Graph neural networks (GNNs) have been widely used to represent this data due to their prominent performance in capturing pairwise relationships. However, the heterogeneity and complexity of multi-modal medical data still pose significant challenges for standard GNNs, which struggle with learning higher-order, non-pairwise relationships. This paper proposes GAMMA-PD (Graph-based Analysis of Multi-modal Motor Impairment Assessments in Parkinson's Disease), a novel heterogeneous hypergraph fusion framework for multi-modal clinical data analysis. GAMMA-PD integrates imaging and non-imaging data into a "hypernetwork" (patient population graph) by preserving higher-order information and similarity between patient profiles and symptom subtypes. We also design a feature-based attention-weighted mechanism to interpret feature-level contributions towards downstream decision tasks. We evaluate our approach with clinical data from the Parkinson's Progression Markers Initiative (PPMI) and a private dataset. We demonstrate gains in predicting motor impairment symptoms in Parkinson's disease. Our end-to-end framework also learns associations between subsets of patient characteristics to generate clinically relevant explanations for disease and symptom profiles. The source code is available at https://github.com/favour-nerrise/GAMMA-PD.
Abstract:Human motion generation is an important area of research in many fields. In this work, we tackle the problem of motion stitching and in-betweening. Current methods either require manual efforts, or are incapable of handling longer sequences. To address these challenges, we propose a diffusion model with a transformer-based denoiser to generate realistic human motion. Our method demonstrated strong performance in generating in-betweening sequences, transforming a variable number of input poses into smooth and realistic motion sequences consisting of 75 frames at 15 fps, resulting in a total duration of 5 seconds. We present the performance evaluation of our method using quantitative metrics such as Frechet Inception Distance (FID), Diversity, and Multimodality, along with visual assessments of the generated outputs.
Abstract:Magnetic navigation (MagNav) is a rising alternative to the Global Positioning System (GPS) and has proven useful for aircraft navigation. Traditional aircraft navigation systems, while effective, face limitations in precision and reliability in certain environments and against attacks. Airborne MagNav leverages the Earth's magnetic field to provide accurate positional information. However, external magnetic fields induced by aircraft electronics and Earth's large-scale magnetic fields disrupt the weaker signal of interest. We introduce a physics-informed approach using Tolles-Lawson coefficients for compensation and Liquid Time-Constant Networks (LTCs) to remove complex, noisy signals derived from the aircraft's magnetic sources. Using real flight data with magnetometer measurements and aircraft measurements, we observe up to a 64% reduction in aeromagnetic compensation error (RMSE nT), outperforming conventional models. This significant improvement underscores the potential of a physics-informed, machine learning approach for extracting clean, reliable, and accurate magnetic signals for MagNav positional estimation.
Abstract:One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (xGW-GAT) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. xGW-GAT predicts the multi-class gait impairment on the MDS Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, xGW-GAT identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically-relevant connectivity patterns. The source code is available at https://github.com/favour-nerrise/xGW-GAT .