Abstract:Current wireless communication technologies are insufficient in the face of ever-increasing demands. Therefore, novel and high-performance communication systems are needed. In this paper, a novel high data rate and high-performance index modulation scheme called double media-based modulation (DMBM) is proposed. The DMBM system doubles the number of mirror activation patterns (MAPs) and the number of transmitted symbols compared to the traditional MBM system during the same symbol period. In this way, the spectral efficiency of the DMBM is doubled and the error performance improves as the number of bits carried in the indices increases. Performance analysis of the DMBM scheme is evaluated for $M$-ary quadrature amplitude modulation ($M$-QAM) on Rayleigh fading channels. The error performance of the proposed DMBM system is compared with spatial modulation (SM), quadrature SM (QSM), MBM, and double SM (DSM) techniques. Also, the throughput, complexity, energy efficiency, spectral efficiency, and capacity analyses for the proposed DMBM system and SM, QSM, MBM, and DSM systems are presented. All analysis results show that the proposed DMBM system is superior to the compared systems.
Abstract:In this study, a novel index modulation based communication system is proposed by combining the recently popular code index modulation-spread spectrum (CIM-SS) and reconfigurable intelligent surface (RIS) techniques. This technique is called CIM-RIS in short. In this proposed system, in addition to the traditional modulated symbols, the spreading code indices also carry data by being embedded in the signal, and the reflection/scattering properties of the signals are voluntarily controlled via the RIS technique. Consequently, the proposed system consumes little energy while transmitting extra bits of information compared to the traditional RIS. Average bit-error error (ABER) analysis of the proposed system is carried out and the system complexity, energy efficiency, and throughput analyses are obtained. Performance analysis of the system is carried out on Rayleigh fading channels for the M-ary quadrature amplitude modulation (QAM) technique. It has been shown by computer simulations that the CIM-RIS scheme has better error performance, faster data transmission speed, and lower transmission energy, compared to traditional RIS, transmit spatial modulation aided RIS (TSM-RIS) and transmit quadrature spatial modulation based RIS (TQSM-RIS) techniques.
Abstract:The demands for high data rate, reliability, high energy efficiency, high spectral efficiency, and low latency communication have been increasing rapidly. For this reason, communication models that use limited resources in the best way, allow fast data transmission, and increase performance has become very important. In this work, a novel high energy and spectral efficient reconfigurable intelligent surface aided spatial media-based modulation system, called RIS-SMBM, is proposed for Rayleigh fading channels. In addition to the bits carried in the M-QAM symbol, while media-based modulation (MBM) provides data bits to be carried in the indices of different channels according to the radio frequency (RF) mirrors are on or off, spatial modulation (SM) provides data bits to be carried in the indices of the transmit antennas. By combining these two modulation schemes, the spectral efficiency increases considerably since the amount of information transmitted in the same time interval is substantially increased. The optimal maximum-likelihood (ML) detector and the enhanced low-complexity (ELC) detector for the RIS-SMBM system are proposed. The ELC detector achieves near ML performance while reducing the complexity of the optimal ML detector for the proposed RIS-SMBM system. We analyze the average bit error rate (ABER), throughput, complexity, and energy efficiency for the RIS-SMBM scheme and verify the analytical results with Monte Carlo simulations. It has been observed that the proposed system provides better error performance as well as providing higher spectral and energy efficiency than benchmark systems.