Abstract:In the era of pervasive internet use and the dominance of social networks, researchers face significant challenges in Persian text mining including the scarcity of adequate datasets in Persian and the inefficiency of existing language models. This paper specifically tackles these challenges, aiming to amplify the efficiency of language models tailored to the Persian language. Focusing on enhancing the effectiveness of sentiment analysis, our approach employs an aspect-based methodology utilizing the ParsBERT model, augmented with a relevant lexicon. The study centers on sentiment analysis of user opinions extracted from the Persian website 'Digikala.' The experimental results not only highlight the proposed method's superior semantic capabilities but also showcase its efficiency gains with an accuracy of 88.2% and an F1 score of 61.7. The importance of enhancing language models in this context lies in their pivotal role in extracting nuanced sentiments from user-generated content, ultimately advancing the field of sentiment analysis in Persian text mining by increasing efficiency and accuracy.
Abstract:Natural Language Processing is revolutionizing the way legal professionals and laypersons operate in the legal field. The considerable potential for Natural Language Processing in the legal sector, especially in developing computational tools for various legal processes, has captured the interest of researchers for years. This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 148 studies, with a final selection of 127 after manual filtering. It explores foundational concepts related to Natural Language Processing in the legal domain, illustrating the unique aspects and challenges of processing legal texts, such as extensive document length, complex language, and limited open legal datasets. We provide an overview of Natural Language Processing tasks specific to legal text, such as Legal Document Summarization, legal Named Entity Recognition, Legal Question Answering, Legal Text Classification, and Legal Judgment Prediction. In the section on legal Language Models, we analyze both developed Language Models and approaches for adapting general Language Models to the legal domain. Additionally, we identify 15 Open Research Challenges, including bias in Artificial Intelligence applications, the need for more robust and interpretable models, and improving explainability to handle the complexities of legal language and reasoning.