Dept. of Computer Science, University of Gour Banga
Abstract:From the autonomous car driving to medical diagnosis, the requirement of the task of image segmentation is everywhere. Segmentation of an image is one of the indispensable tasks in computer vision. This task is comparatively complicated than other vision tasks as it needs low-level spatial information. Basically, image segmentation can be of two types: semantic segmentation and instance segmentation. The combined version of these two basic tasks is known as panoptic segmentation. In the recent era, the success of deep convolutional neural network (CNN) has influenced the field of segmentation greatly and gave us various successful models to date. In this survey, we are going to take a glance at the evolution of both semantic and instance segmentation work based on CNN. We have also specified comparative architectural details of some state-of-the-art models and discuss their training details to present a lucid understanding of hyper-parameter tuning of those models. Lastly, we have drawn a comparison among the performance of those models on different datasets.
Abstract:Bengali handwritten digit recognition can be done using different image classification techniques. But the images of handwritten digits are different from natural images as the orientation of a digit as well as similarity of features of different digits are important. On the other hand, deep convolutional neural networks are achieving huge success in computer vision problems, especially in image classification. This BDNet is a densely connected deep convolutional neural network model based on state-of-the-art algorithm DenseNet to classify Bengali handwritten numeral digits. The BDNet has end-to-end trained using ISI Bengali handwritten numeral dataset with 5-fold cross-validation. The BDNet has achieved a test accuracy of 99.65% (baseline was 99.40%) on test data of ISI Bengali handwritten numerals. The trained model also gives 97.50% on own created dataset (which are not used during training). That is, this model gives a 41.66% error reduction compared to the previous state-of-the-art model. Codes, trained model and own dataset available at: https://github.com/Sufianlab/BDNet.
Abstract:Convolutional Neural Network (CNN) is the state-of-the-art for image classification task. Here we have briefly discussed different components of CNN. In this paper, We have explained different CNN architectures for image classification. Through this paper, we have shown advancements in CNN from LeNet-5 to latest SENet model. We have discussed the model description and training details of each model. We have also drawn a comparison among those models.