Abstract:Face recognition has achieved outstanding performance in the last decade with the development of deep learning techniques. Nowadays, the challenges in face recognition are related to specific scenarios, for instance, the performance under diverse image quality, the robustness for aging and edge cases of person age (children and elders), distinguishing of related identities. In this set of problems, recognizing children's faces is one of the most sensitive and important. One of the reasons for this problem is the existing bias towards adults in existing face datasets. In this work, we present a benchmark dataset for children's face recognition, which is compiled similarly to the famous face recognition benchmarks LFW, CALFW, CPLFW, XQLFW and AgeDB. We also present a development dataset (separated into train and test parts) for adapting face recognition models for face images of children. The proposed data is balanced for African, Asian, Caucasian, and Indian races. To the best of our knowledge, this is the first standartized data tool set for benchmarking and the largest collection for development for children's face recognition. Several face recognition experiments are presented to demonstrate the performance of the proposed data tool set.
Abstract:Face morphing attack detection (MAD) is one of the most challenging tasks in the field of face recognition nowadays. In this work, we introduce a novel deep learning strategy for a single image face morphing detection, which implies the discrimination of morphed face images along with a sophisticated face recognition task in a complex classification scheme. It is directed onto learning the deep facial features, which carry information about the authenticity of these features. Our work also introduces several additional contributions: the public and easy-to-use face morphing detection benchmark and the results of our wild datasets filtering strategy. Our method, which we call MorDeephy, achieved the state of the art performance and demonstrated a prominent ability for generalising the task of morphing detection to unseen scenarios.