Abstract:Conventional manual lithological mapping (MLM) through field surveys are resource-extensive and time-consuming. Digital lithological mapping (DLM), harnessing remotely sensed spectral imaging techniques, provides an effective strategy to streamline target locations for MLM or an efficient alternative to MLM. DLM relies on laboratory-generated generic end-member signatures of minerals for spectral analysis. Thus, the accuracy of DLM may be limited due to the presence of site-specific impurities. A strategy, based on a hybrid machine-learning and signal-processing algorithm, is proposed in this paper to tackle this problem of site-specific impurities. In addition, a soil pixel alignment strategy is proposed here to visualize the relative purity of the target minerals. The proposed methodologies are validated via case studies for mapping of Limestone deposits in Jaffna, Ilmenite deposits in Pulmoddai and Mannar, and Montmorillonite deposits in Murunkan, Sri Lanka. The results of satellite-based spectral imaging analysis were corroborated with X-ray diffraction (XRD) and Magnetic Separation (MS) analysis of soil samples collected from those sites via field surveys. There exists a good correspondence between the relative availability of the minerals with the XRD and MS results. In particular, correlation coefficients of 0.8115 and 0.9853 were found for the sites in Pulmoddai and Jaffna respectively.
Abstract:Training a deep neural network for classification constitutes a major problem in remote sensing due to the lack of adequate field data. Acquiring high-resolution ground truth (GT) by human interpretation is both cost-ineffective and inconsistent. We propose, instead, to utilize high-resolution, hyperspectral images for solving this problem, by unmixing these images to obtain reliable GT for training a deep network. Specifically, we simulate GT from high-resolution, hyperspectral FENIX images, and use it for training a convolutional neural network (CNN) for pixel-based classification. We show how the model can be transferred successfully to classify new mid-resolution VENuS imagery.