Abstract:We built a custom video-based eye-tracker that saves every video frame as a full resolution image (MJPEG). Images can be processed offline for the detection of ocular features, including the pupil and corneal reflection (First Purkinje Image, P1) position. A comparison of multiple algorithms for detection of pupil and corneal reflection can be performed. The system provides for highly flexible stimulus creation, with mixing of graphic, image, and video stimuli. We can change cameras and infrared illuminators depending on the image qualities and frame rate desired. Using this system, we have detected the position of the Fourth Purkinje image (P4) in the frames. We show that when we estimate gaze by calculating P1-P4, signal compares well with gaze estimated with a DPI eye-tracker, which natively detects and tracks the P1 and P4.