Abstract:In contrast to conventional closed-set recognition, open-set recognition (OSR) assumes the presence of an unknown class, which is not seen to a model during training. One predominant approach in OSR is metric learning, where a model is trained to separate the inter-class representations of known class data. Numerous works in OSR reported that, even though the models are trained only with the known class data, the models become aware of the unknown, and learn to separate the unknown class representations from the known class representations. This paper analyzes this emergent phenomenon by observing the Jacobian norm of representation. We theoretically show that minimizing the intra-class distances within the known set reduces the Jacobian norm of known class representations while maximizing the inter-class distances within the known set increases the Jacobian norm of the unknown class. The closed-set metric learning thus separates the unknown from the known by forcing their Jacobian norm values to differ. We empirically validate our theoretical framework with ample pieces of evidence using standard OSR datasets. Moreover, under our theoretical framework, we explain how the standard deep learning techniques can be helpful for OSR and use the framework as a guiding principle to develop an effective OSR model.