Abstract:Our society is facing rampant misinformation harming public health and trust. To address the societal challenge, we introduce FACT-GPT, a system leveraging Large Language Models (LLMs) to automate the claim matching stage of fact-checking. FACT-GPT, trained on a synthetic dataset, identifies social media content that aligns with, contradicts, or is irrelevant to previously debunked claims. Our evaluation shows that our specialized LLMs can match the accuracy of larger models in identifying related claims, closely mirroring human judgment. This research provides an automated solution for efficient claim matching, demonstrates the potential of LLMs in supporting fact-checkers, and offers valuable resources for further research in the field.
Abstract:In today's digital era, the rapid spread of misinformation poses threats to public well-being and societal trust. As online misinformation proliferates, manual verification by fact checkers becomes increasingly challenging. We introduce FACT-GPT (Fact-checking Augmentation with Claim matching Task-oriented Generative Pre-trained Transformer), a framework designed to automate the claim matching phase of fact-checking using Large Language Models (LLMs). This framework identifies new social media content that either supports or contradicts claims previously debunked by fact-checkers. Our approach employs GPT-4 to generate a labeled dataset consisting of simulated social media posts. This data set serves as a training ground for fine-tuning more specialized LLMs. We evaluated FACT-GPT on an extensive dataset of social media content related to public health. The results indicate that our fine-tuned LLMs rival the performance of larger pre-trained LLMs in claim matching tasks, aligning closely with human annotations. This study achieves three key milestones: it provides an automated framework for enhanced fact-checking; demonstrates the potential of LLMs to complement human expertise; offers public resources, including datasets and models, to further research and applications in the fact-checking domain.