Abstract:In this paper, the Model Predictive Control (MPC) and Moving Horizon Estimator (MHE) strategies using a data-driven approach to learn a Takagi-Sugeno (TS) representation of the vehicle dynamics are proposed to solve autonomous driving control problems in real-time. To address the TS modeling, we use the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to obtain a set of polytopic-based linear representations as well as a set of membership functions relating in a non-linear way the different linear subsystems. The proposed control approach is provided by racing-based references of an external planner and estimations from the MHE offering a high driving performance in racing mode. The control-estimation scheme is tested in a simulated racing environment to show the potential of the presented approaches.
Abstract:This work proposes a solution for the longitudinal and lateral control problem of urban autonomous vehicles using a gain scheduling LPV control approach. Using the kinematic and dynamic vehicle models, a linear parameter varying (LPV) representation is adopted and a cascade control methodology is proposed for controlling both vehicle behaviours. In particular, for the control design, the use of both models separately lead to solve two LPV LMI-LQR problems. Furthermore, to achieve the desired levels of performance, an approach based on cascade design of the the kinematic and dynamic controllers has been proposed. This cascade control scheme is based on the idea that the dynamic closed loop behaviour is designed to be faster than the kinematic closed loop one. The obtained gain scheduling LPV control approach, jointly with a trajectory generation module, has presented suitable results in a simulated city driving scenario.