Abstract:Menstrual health is a critical yet often overlooked aspect of women's healthcare. Despite its clinical relevance, detailed data on menstrual characteristics is rarely available in structured medical records. To address this gap, we propose a novel Natural Language Processing pipeline to extract key menstrual cycle attributes -- dysmenorrhea, regularity, flow volume, and intermenstrual bleeding. Our approach utilizes the GatorTron model with Multi-Task Prompt-based Learning, enhanced by a hybrid retrieval preprocessing step to identify relevant text segments. It out- performs baseline methods, achieving an average F1-score of 90% across all menstrual characteristics, despite being trained on fewer than 100 annotated clinical notes. The retrieval step consistently improves performance across all approaches, allowing the model to focus on the most relevant segments of lengthy clinical notes. These results show that combining multi-task learning with retrieval improves generalization and performance across menstrual charac- teristics, advancing automated extraction from clinical notes and supporting women's health research.
Abstract:Clinical note classification is a common clinical NLP task. However, annotated data-sets are scarse. Prompt-based learning has recently emerged as an effective method to adapt pre-trained models for text classification using only few training examples. A critical component of prompt design is the definition of the template (i.e. prompt text). The effect of template position, however, has been insufficiently investigated. This seems particularly important in the clinical setting, where task-relevant information is usually sparse in clinical notes. In this study we develop a keyword-optimized template insertion method (KOTI) and show how optimizing position can improve performance on several clinical tasks in a zero-shot and few-shot training setting.