Center for Astrophysics | Harvard & Smithsonian, University of Southampton
Abstract:Black hole X-ray binaries (BHBs) can be studied with spectral fitting to provide physical constraints on accretion in extreme gravitational environments. Traditional methods of spectral fitting such as Markov Chain Monte Carlo (MCMC) face limitations due to computational times. We introduce a probabilistic model, utilizing a variational autoencoder with a normalizing flow, trained to adopt a physical latent space. This neural network produces predictions for spectral-model parameters as well as their full probability distributions. Our implementations result in a significant improvement in spectral reconstructions over a previous deterministic model while performing three orders of magnitude faster than traditional methods.
Abstract:Advancements in space telescopes have opened new avenues for gathering vast amounts of data on exoplanet atmosphere spectra. However, accurately extracting chemical and physical properties from these spectra poses significant challenges due to the non-linear nature of the underlying physics. This paper presents novel machine learning models developed by the AstroAI team for the Ariel Data Challenge 2023, where one of the models secured the top position among 293 competitors. Leveraging Normalizing Flows, our models predict the posterior probability distribution of atmospheric parameters under different atmospheric assumptions. Moreover, we introduce an alternative model that exhibits higher performance potential than the winning model, despite scoring lower in the challenge. These findings highlight the need to reevaluate the evaluation metric and prompt further exploration of more efficient and accurate approaches for exoplanet atmosphere spectra analysis. Finally, we present recommendations to enhance the challenge and models, providing valuable insights for future applications on real observational data. These advancements pave the way for more effective and timely analysis of exoplanet atmospheric properties, advancing our understanding of these distant worlds.