Abstract:Many terrain modelling methods have been proposed for the past decades, providing efficient and often interactive authoring tools. However, they generally do not include any notion of style, which is a critical aspect for designers in the entertainment industry. We introduce StyleDEM, a new generative adversarial network method for terrain synthesis and authoring, with a versatile toolbox of authoring methods with style. This method starts from an input sketch or an existing terrain. It outputs a terrain with features that can be authored using interactive brushes and enhanced with additional tools such as style manipulation or super-resolution. The strength of our approach resides in the versatility and interoperability of the toolbox.
Abstract:In this paper, we propose a method for the automatic semantic segmentation of satellite images into six classes (sparse forest, dense forest, moor, herbaceous formation, building, and road). We rely on Swin Transformer architecture and build the dataset from IGN open data. We report quantitative and qualitative segmentation results on this dataset and discuss strengths and limitations. The dataset and the trained model are made publicly available.