Abstract:Structured hand gestures that incorporate visual motions and signs are used in sign language. Sign language is a valuable means of daily communication for individuals who are deaf or have speech impairments, but it is still rare among hearing people, and fewer are capable of understand it. Within the academic context, parents and teachers play a crucial role in supporting deaf students from childhood by facilitating their learning of sign language. In the last years, among all the teaching tools useful for learning sign language, the use of Virtual Reality (VR) has increased, as it has been demonstrated to improve retention, memory and attention during the learning process. The ISENSE project has been created to assist students with deafness during their academic life by proposing different technological tools for teaching sign language to the hearing community in the academic context. As part of the ISENSE project, this work aims to develop an application for Spanish and Italian sign language recognition that exploits the VR environment to quickly and easily create a comprehensive database of signs and an Artificial Intelligence (AI)-based software to accurately classify and recognize static and dynamic signs: from letters to sentences.
Abstract:Jewelry recognition is a complex task due to the different styles and designs of accessories. Precise descriptions of the various accessories is something that today can only be achieved by experts in the field of jewelry. In this work, we propose an approach for jewelry recognition using computer vision techniques and image captioning, trying to simulate this expert human behavior of analyzing accessories. The proposed methodology consist on using different image captioning models to detect the jewels from an image and generate a natural language description of the accessory. Then, this description is also utilized to classify the accessories at different levels of detail. The generated caption includes details such as the type of jewel, color, material, and design. To demonstrate the effectiveness of the proposed method in accurately recognizing different types of jewels, a dataset consisting of images of accessories belonging to jewelry stores in C\'ordoba (Spain) has been created. After testing the different image captioning architectures designed, the final model achieves a captioning accuracy of 95\%. The proposed methodology has the potential to be used in various applications such as jewelry e-commerce, inventory management or automatic jewels recognition to analyze people's tastes and social status.
Abstract:Homelessness is a social and health problem with great repercussions in Europe. Many non-governmental organisations help homeless people by collecting and analysing large amounts of information about them. However, these tasks are not always easy to perform, and hinder other of the organisations duties. The SINTECH project was created to tackle this issue proposing two different tools: a mobile application to quickly and easily collect data; and a software based on artificial intelligence which obtains interesting information from the collected data. The first one has been distributed to some Spanish organisations which are using it to conduct surveys of homeless people. The second tool implements different feature selection and association rules mining methods. These artificial intelligence techniques have allowed us to identify the most relevant features and some interesting association rules from previously collected homeless data.
Abstract:Dyslexia is a neurodevelopmental disorder that is estimated to affect about 5-10% of the population. In particular, phonological dyslexia causes problems in connecting the sounds of words with their written forms. This results in difficulties such as slow reading speed, inaccurate reading, and difficulty decoding unfamiliar words. Moreover, dyslexia can also be a challenging and frustrating experience for students as they may feel misunderstood or stigmatized by their peers or educators. For these reasons, the use of compensatory tools and strategies is of crucial importance for dyslexic students to have the same opportunities as non-dyslexic ones. However, generally, people underestimate the problem and are not aware of the importance of support methodologies. In the light of this, the main purpose of this paper is to propose a virtual reality (VR) serious game through which teachers, students and, in general, non-dyslexic people could understand which are some of the issues of student with dyslexia and the fundamental utility of offering support to them. In the game, players must create a potion by following a recipe written in an alphabet that is specifically designed to replicate the reading difficulties experienced by individuals with dyslexia. The task must be solved first without any help and then by receiving supporting tools and strategies with the idea that the player can put himself in the place of the dyslexic person and understand the real need for support methodologies.
Abstract:Learning disorders are neurological conditions that affect the brain's ability to interconnect communication areas. Dyslexic students experience problems with reading, memorizing, and exposing concepts; however the magnitude of these can be mitigated through both therapies and the creation of compensatory mechanisms. Several efforts have been made to mitigate these issues, leading to the creation of digital resources for students with specific learning disorders attending primary and secondary education levels. Conversely, a standard approach is still missed in higher education. The VRAIlexia project has been created to tackle this issue by proposing two different tools: a mobile application integrating virtual reality (VR) to collect data quickly and easily, and an artificial intelligencebased software (AI) to analyze the collected data for customizing the supporting methodology for each student. The first one has been created and is being distributed among dyslexic students in Higher Education Institutions, for the conduction of specific psychological and psychometric tests. The second tool applies specific artificial intelligence algorithms to the data gathered via the application and other surveys. These AI techniques have allowed us to identify the most relevant difficulties faced by the students' cohort. Our different models have obtained around 90\% mean accuracy for predicting the support tools and learning strategies.