Abstract:DoS and DDoS attacks have been growing in size and number over the last decade and existing solutions to mitigate these attacks are in general inefficient. Compared to other types of malicious cyber attacks, DoS and DDoS attacks are particularly more challenging to combat. With their ability to mask themselves as legitimate traffic, developing methods to detect these types of attacks on a packet or flow level, has proven to be a difficult task. In this paper, we explore the potential of Variational Autoencoders to serve as a component within an intelligent security solution that differentiates between normal and malicious traffic. Two methods based on the ability of Variational Autoencoders to learn latent representations from network traffic flows are proposed. The first method resorts to a classifier based on the latent encodings obtained from Variational Autoencoders learned from traffic traces. The second method is rather an anomaly detection method where the Variational Autoencoder is used to learn the abstract feature representations of exclusively legitimate traffic. Then anomalies are filtered out by relying on the reconstruction loss of the Variational Autoencoder. Both of the proposed methods have been thoroughly tested on two separate datasets with a similar feature space. The results show that both methods are promising, with a slight superiority of the classifier based method over the anomaly based one. %that the first method is able to successfully detect individual traffic flows with high precision on the training and validation data, slightly less successfully on the test data. For the second method, the Variational Autoencoder will require further adjustments to be able to sufficiently filter out anomalies from network traffic flows.