Abstract:Urban gardening is widely recognized for its numerous health and environmental benefits. However, the lack of suitable garden spaces, demanding daily schedules and limited gardening expertise present major roadblocks for citizens looking to engage in urban gardening. While prior research has explored smart home solutions to support urban gardeners, these approaches currently do not fully address these practical barriers. In this paper, we present PlantPal, a system that enables the cultivation of garden spaces irrespective of one's location, expertise level, or time constraints. PlantPal enables the shared operation of a precision agriculture robot (PAR) that is equipped with garden tools and a multi-camera system. Insights from a 3-week deployment (N=18) indicate that PlantPal facilitated the integration of gardening tasks into daily routines, fostered a sense of connection with one's field, and provided an engaging experience despite the remote setting. We contribute design considerations for future robot-assisted urban gardening concepts.
Abstract:As vehicle automation technology continues to mature, there is a necessity for robust remote monitoring and intervention features. These are essential for intervening during vehicle malfunctions, challenging road conditions, or in areas that are difficult to navigate. This evolution in the role of the human operator - from a constant driver to an intermittent teleoperator - necessitates the development of suitable interaction interfaces. While some interfaces were suggested, a comparative study is missing. We designed, implemented, and evaluated three interaction concepts (path planning, trajectory guidance, and waypoint guidance) with up to four concurrent requests of automated vehicles in a within-subjects study with N=23 participants. The results showed a clear preference for the path planning concept. It also led to the highest usability but lower satisfaction. With trajectory guidance, the fewest requests were resolved. The study's findings contribute to the ongoing development of HMIs focused on the remote assistance of automated vehicles.