Abstract:Open Radio Access Network (O-RAN) adopts a flexible, open, and virtualized structure with standardized interfaces, reducing dependency on a single supplier. Conflict management in O-RAN refers to the process of identifying and resolving conflicts between network applications. xApps are applications deployed at the RAN Intelligent Controller (RIC) that leverage advanced AI/ML algorithms to make dynamic decisions for network optimization. The lack of a unified mechanism to coordinate and prioritize the actions of different applications can create three types of conflicts (direct, indirect, and implicit). In our paper, we introduce a novel data-driven GCN-based method called Graph-based xApps Conflict and Root Cause Analysis Engine (GRACE) based on Graph Convolutional Network (GCN). It detects three types of conflicts (direct, indirect, and implicit) and pinpoints the root causes (xApps). GRACE captures the complex and hidden dependencies among the xApps, the controlled parameters, and the KPIs in O-RAN to detect possible conflicts. Then, it identifies the root causes (xApps) contributing to the detected conflicts. The proposed method was tested on highly imbalanced datasets where the number of conflict instances ranges from 40% to 10%. The model is tested in a setting that simulates real-world scenarios where conflicts are rare to assess its performance and generalizability. Experimental results demonstrate an exceptional performance, achieving a high F1-score greater than 98% for all the case studies.