Abstract:Open Source Software (OSS) often relies on large repositories, like SourceForge, for initial incubation. The OSS repositories offer a large variety of meta-data providing interesting information about projects and their success. In this paper we propose a data mining approach for training classifiers on the OSS meta-data provided by such data repositories. The classifiers learn to predict the successful continuation of an OSS project. The `successfulness' of projects is defined in terms of the classifier confidence with which it predicts that they could be ported in popular OSS projects (such as FreeBSD, Gentoo Portage).