Abstract:We propose a new descriptor for local atomic environments, to be used in combination with machine learning models for the construction of interatomic potentials. The Local Atomic Tensors Trainable Expansion (LATTE) allows for the efficient construction of a variable number of many-body terms with learnable parameters, resulting in a descriptor that is efficient, expressive, and can be scaled to suit different accuracy and computational cost requirements. We compare this new descriptor to existing ones on several systems, showing it to be competitive with very fast potentials at one end of the spectrum, and extensible to an accuracy close to the state of the art.
Abstract:We present the latest release of PANNA 2.0 (Properties from Artificial Neural Network Architectures), a code for the generation of neural network interatomic potentials based on local atomic descriptors and multilayer perceptrons. Built on a new back end, this new release of PANNA features improved tools for customizing and monitoring network training, better GPU support including a fast descriptor calculator, new plugins for external codes and a new architecture for the inclusion of long-range electrostatic interactions through a variational charge equilibration scheme. We present an overview of the main features of the new code, and several benchmarks comparing the accuracy of PANNA models to the state of the art, on commonly used benchmarks as well as richer datasets.