Abstract:The increasing complexity of power grid management, driven by the emergence of prosumers and the demand for cleaner energy solutions, has needed innovative approaches to ensure stability and efficiency. This paper presents a novel approach within the model-free framework of reinforcement learning, aimed at optimizing power network operations without prior expert knowledge. We introduce a masked topological action space, enabling agents to explore diverse strategies for cost reduction while maintaining reliable service using the state logic as a guide for choosing proper actions. Through extensive experimentation across 20 different scenarios in a simulated 5-substation environment, we demonstrate that our approach achieves a consistent reduction in power losses, while ensuring grid stability against potential blackouts. The results underscore the effectiveness of combining dynamic observation formalization with opponent-based training, showing a viable way for autonomous management solutions in modern energy systems or even for building a foundational model for this field.
Abstract:Data quality or data evaluation is sometimes a task as important as collecting a large volume of data when it comes to generating accurate artificial intelligence models. In fact, being able to evaluate the data can lead to a larger database that is better suited to a particular problem because we have the ability to filter out data obtained automatically of dubious quality. In this paper we present RLBoost, an algorithm that uses deep reinforcement learning strategies to evaluate a particular dataset and obtain a model capable of estimating the quality of any new data in order to improve the final predictive quality of a supervised learning model. This solution has the advantage that of being agnostic regarding the supervised model used and, through multi-attention strategies, takes into account the data in its context and not only individually. The results of the article show that this model obtains better and more stable results than other state-of-the-art algorithms such as LOO, DataShapley or DVRL.