Abstract:In differential equation discovery algorithms, a priori expert knowledge is mainly used implicitly to constrain the form of the expected equation, making it impossible for the algorithm to truly discover equations. Instead, most differential equation discovery algorithms try to recover the coefficients for a known structure. In this paper, we describe an algorithm that allows the discovery of unknown equations using automatically or manually extracted background knowledge. Instead of imposing rigid constraints, we modify the structure space so that certain terms are likely to appear within the crossover and mutation operators. In this way, we mimic expertly chosen terms while preserving the possibility of obtaining any equation form. The paper shows that the extraction and use of knowledge allows it to outperform the SINDy algorithm in terms of search stability and robustness. Synthetic examples are given for Burgers, wave, and Korteweg--De Vries equations.
Abstract:The discovery of equations with knowledge of the process origin is a tempting prospect. However, most equation discovery tools rely on gradient methods, which offer limited control over parameters. An alternative approach is the evolutionary equation discovery, which allows modification of almost every optimization stage. In this paper, we examine the modifications that can be introduced into the evolutionary operators of the equation discovery algorithm, taking inspiration from directed evolution techniques employed in fields such as chemistry and biology. The resulting approach, dubbed directed equation discovery, demonstrates a greater ability to converge towards accurate solutions than the conventional method. To support our findings, we present experiments based on Burgers', wave, and Korteweg--de Vries equations.