Reza
Abstract:The increasing computational demands of transformer models in time series classification necessitate effective optimization strategies for energy-efficient deployment. This paper presents a systematic investigation of optimization techniques, focusing on structured pruning and quantization methods for transformer architectures. Through extensive experimentation on three distinct datasets (RefrigerationDevices, ElectricDevices, and PLAID), we quantitatively evaluate model performance and energy efficiency across different transformer configurations. Our experimental results demonstrate that static quantization reduces energy consumption by 29.14% while maintaining classification performance, and L1 pruning achieves a 63% improvement in inference speed with minimal accuracy degradation. These findings provide valuable insights into the effectiveness of optimization strategies for transformer-based time series classification, establishing a foundation for efficient model deployment in resource-constrained environments.
Abstract:Super-resolution (SR) techniques are essential for improving Earth System Model (ESM) data's spatial resolution, which helps better understand complex environmental processes. This paper presents a new algorithm, ViFOR, which combines Vision Transformers (ViT) and Implicit Neural Representation Networks (INRs) to generate High-Resolution (HR) images from Low-Resolution (LR) inputs. ViFOR introduces a novel integration of Fourier-based activation functions within the Vision Transformer architecture, enabling it to effectively capture global context and high-frequency details critical for accurate SR reconstruction. The results show that ViFOR outperforms state-of-the-art methods such as ViT, Sinusoidal Representation Networks (SIREN), and SR Generative Adversarial Networks (SRGANs) based on metrics like Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE) both for global as well as the local imagery. ViFOR improves PSNR of up to 4.18 dB, 1.56 dB, and 1.73 dB over ViT for full images in the Source Temperature, Shortwave, and Longwave Flux.
Abstract:Purpose: Earth system models (ESMs) integrate the interactions of the atmosphere, ocean, land, ice, and biosphere to estimate the state of regional and global climate under a wide variety of conditions. The ESMs are highly complex, and thus, deep neural network architectures are used to model the complexity and store the down-sampled data. In this paper, we propose the Vision Transformer Sinusoidal Representation Networks (ViSIR) to improve the single image SR (SR) reconstruction task for the ESM data. Methods: ViSIR combines the SR capability of Vision Transformers (ViT) with the high-frequency detail preservation of the Sinusoidal Representation Network (SIREN) to address the spectral bias observed in SR tasks. Results: The ViSIR outperforms ViT by 4.1 dB, SIREN by 7.5 dB, and SR-Generative Adversarial (SR-GANs) by 7.1dB PSNR on average for three different measurements. Conclusion: The proposed ViSIR is evaluated and compared with state-of-the-art methods. The results show that the proposed algorithm is outperforming other methods in terms of Mean Square Error(MSE), Peak-Signal-to-Noise-Ratio(PSNR), and Structural Similarity Index Measure(SSIM).
Abstract:This paper introduces adversarial attacks targeting a Graph Neural Network (GNN) based radio resource management system in point to point (P2P) communications. Our focus lies on perturbing the trained GNN model during the test phase, specifically targeting its vertices and edges. To achieve this, four distinct adversarial attacks are proposed, each accounting for different constraints, and aiming to manipulate the behavior of the system. The proposed adversarial attacks are formulated as optimization problems, aiming to minimize the system's communication quality. The efficacy of these attacks is investigated against the number of users, signal-to-noise ratio (SNR), and adversary power budget. Furthermore, we address the detection of such attacks from the perspective of the Central Processing Unit (CPU) of the system. To this end, we formulate an optimization problem that involves analyzing the distribution of channel eigenvalues before and after the attacks are applied. This formulation results in a Min-Max optimization problem, allowing us to detect the presence of attacks. Through extensive simulations, we observe that in the absence of adversarial attacks, the eigenvalues conform to Johnson's SU distribution. However, the attacks significantly alter the characteristics of the eigenvalue distribution, and in the most effective attack, they even change the type of the eigenvalue distribution.