LAMA
Abstract:We address the multiclass classification problem for stochastic diffusion paths, assuming that the classes are distinguished by their drift functions, while the diffusion coefficient remains common across all classes. In this setting, we propose a classification algorithm that relies on the minimization of the L 2 risk. We establish rates of convergence for the resulting predictor. Notably, we introduce a margin assumption under which we show that our procedure can achieve fast rates of convergence. Finally, a simulation study highlights the numerical performance of our classification algorithm.
Abstract:We study the multiclass classification problem where the features come from the mixture of time-homogeneous diffusions. Specifically, the classes are discriminated by their drift functions while the diffusion coefficient is common to all classes and unknown. In this framework, we build a plug-in classifier which relies on nonparametric estimators of the drift and diffusion functions. We first establish the consistency of our classification procedure under mild assumptions and then provide rates of cnvergence under different set of assumptions. Finally, a numerical study supports our theoretical findings.