Abstract:In recent years, many efforts have been made to complete knowledge graphs (KGs) by various graph embedding methods, most of which only focus on static KGs (SKGs) without considering the time dependency of facts. However, KGs in reality are dynamic and there exists correlations between facts with different timestamps. Due to the sparsity of temporal KGs (TKGs), SKG embedding methods cannot be directly applied to TKGs. And existing methods of TKG embedding suffer from two issues: (1) they follow the pattern of SKG embedding where all facts need to be retrained when a new timestamp appears; (2) they don't provide a general way to transplant SKG embedding methods to TKGs and therefore lack extensibility. In this paper, we propose a novel Recursive Temporal Fact Embedding Framework (RTFE) to transplant translation-based or graph neural network-based SKG embedding methods to TKGs. In the recursive way, timestamp parameters provide a good starting point for the next future timestamp. And existing SKG embedding models can be used as components. Experiments on TKGs show that our proposed framework (1) outperforms the state-of-the-art baseline model in the entity prediction task on fact datasets; (2) achieves similar performance compared with the state-of-the-art baseline model in relation prediction task on fact datasets; and (3) shows performance in the entity prediction task on event datasets.