Abstract:Enabling multi-fingered robots to grasp and manipulate objects with human-like dexterity is especially challenging during the dynamic, continuous hand-object interactions. Closed-loop feedback control is essential for dexterous hands to dynamically finetune hand poses when performing precise functional grasps. This work proposes an adaptive motion planning method based on deep reinforcement learning to adjust grasping poses according to real-time feedback from joint torques from pre-grasp to goal grasp. We find the multi-joint torques of the dexterous hand can sense object positions through contacts and collisions, enabling real-time adjustment of grasps to generate varying grasping trajectories for objects in different positions. In our experiments, the performance gap with and without force feedback reveals the important role of force feedback in adaptive manipulation. Our approach utilizing force feedback preliminarily exhibits human-like flexibility, adaptability, and precision.