Abstract:Powerful deep neural networks are vulnerable to adversarial attacks. To obtain adversarially robust models, researchers have separately developed adversarial training and Jacobian regularization techniques. There are abundant theoretical and empirical studies for adversarial training, but theoretical foundations for Jacobian regularization are still lacking. In this study, we show that Jacobian regularization is closely related to adversarial training in that $\ell_{2}$ or $\ell_{1}$ Jacobian regularized loss serves as an approximate upper bound on the adversarially robust loss under $\ell_{2}$ or $\ell_{\infty}$ adversarial attack respectively. Further, we establish the robust generalization gap for Jacobian regularized risk minimizer via bounding the Rademacher complexity of both the standard loss function class and Jacobian regularization function class. Our theoretical results indicate that the norms of Jacobian are related to both standard and robust generalization. We also perform experiments on MNIST data classification to demonstrate that Jacobian regularized risk minimization indeed serves as a surrogate for adversarially robust risk minimization, and that reducing the norms of Jacobian can improve both standard and robust generalization. This study promotes both theoretical and empirical understandings to adversarially robust generalization via Jacobian regularization.
Abstract:Generalization theory has been established for sparse deep neural networks under high-dimensional regime. Beyond generalization, parameter estimation is also important since it is crucial for variable selection and interpretability of deep neural networks. Current theoretical studies concerning parameter estimation mainly focus on two-layer neural networks, which is due to the fact that the convergence of parameter estimation heavily relies on the regularity of the Hessian matrix, while the Hessian matrix of deep neural networks is highly singular. To avoid the unidentifiability of deep neural networks in parameter estimation, we propose to conduct nonparametric estimation of partial derivatives with respect to inputs. We first show that model convergence of sparse deep neural networks is guaranteed in that the sample complexity only grows with the logarithm of the number of parameters or the input dimension when the $\ell_{1}$-norm of parameters is well constrained. Then by bounding the norm and the divergence of partial derivatives, we establish that the convergence rate of nonparametric estimation of partial derivatives scales as $\mathcal{O}(n^{-1/4})$, a rate which is slower than the model convergence rate $\mathcal{O}(n^{-1/2})$. To the best of our knowledge, this study combines nonparametric estimation and parametric sparse deep neural networks for the first time. As nonparametric estimation of partial derivatives is of great significance for nonlinear variable selection, the current results show the promising future for the interpretability of deep neural networks.