Abstract:The INTERSPEECH 2025 Challenge on Multilingual Conversational Speech Language Models (MLC-SLM) promotes multilingual conversational ASR with large language models (LLMs). Our previous SHNU-mASR system adopted a competitive parallel-speech-encoder architecture that integrated Whisper and mHuBERT with an LLM. However, it faced two challenges: simple feature concatenation may not fully exploit complementary information, and the performance gap between LLM-based ASR and end-to-end(E2E) encoder-decoder ASR remained unexplored. In this work, we present an enhanced LLM-based ASR framework that combines fine-tuned Whisper and mHuBERT encoders with an LLM to enrich speech representations. We first evaluate E2E Whisper models with LoRA and full fine-tuning on the MLC-SLM ASR task, and then propose cross-attention-based fusion mechanisms for the parallel-speech-encoder. On the official evaluation set of the MLC-SLM Challenge, our system achieves a CER/WER of 10.69%, ranking on par with the top-ranked Track 1 systems, even though it uses only 1,500 hours of baseline training data compared with their large-scale training sets. Nonetheless, we find that our final LLM-based ASR still does not match the performance of a fine-tuned E2E Whisper model, providing valuable empirical guidance for future Speech-LLM design. Our code is publicly available at https://github.com/1535176727/MLC-SLM.
Abstract:Large-scale multilingual ASR (mASR) models such as Whisper achieve strong performance but incur high computational and latency costs, limiting their deployment on resource-constrained edge devices. In this study, we propose a lightweight and language-agnostic multilingual ASR system based on a CTC architecture with domain adaptation. Specifically, we introduce a Language-agnostic Hierarchical LoRA-MoE (HLoRA) framework integrated into an mHuBERT-CTC model, enabling end-to-end decoding via LID-posterior-driven LoRA routing. The hierarchical design consists of a multilingual shared LoRA for learning language-invariant acoustic representations and language-specific LoRA experts for modeling language-dependent characteristics. The proposed routing mechanism removes the need for prior language identity information or explicit language labels during inference, achieving true language-agnostic decoding. Experiments on MSR-86K and the MLC-SLM 2025 Challenge datasets demonstrate that HLoRA achieves competitive performance with state-of-the-art two-stage inference methods using only single-pass decoding, significantly improving decoding efficiency for low-resource mASR applications.
Abstract:Self-supervised learning (SSL) models offer powerful representations for sound event detection (SED), yet their synergistic potential remains underexplored. This study systematically evaluates state-of-the-art SSL models to guide optimal model selection and integration for SED. We propose a framework that combines heterogeneous SSL representations (e.g., BEATs, HuBERT, WavLM) through three fusion strategies: individual SSL embedding integration, dual-modal fusion, and full aggregation. Experiments on the DCASE 2023 Task 4 Challenge reveal that dual-modal fusion (e.g., CRNN+BEATs+WavLM) achieves complementary performance gains, while CRNN+BEATs alone delivers the best results among individual SSL models. We further introduce normalized sound event bounding boxes (nSEBBs), an adaptive post-processing method that dynamically adjusts event boundary predictions, improving PSDS1 by up to 4% for standalone SSL models. These findings highlight the compatibility and complementarity of SSL architectures, providing guidance for task-specific fusion and robust SED system design.




Abstract:The detection and analysis of infant cry and snoring events are crucial tasks within the field of audio signal processing. While existing datasets for general sound event detection are plentiful, they often fall short in providing sufficient, strongly labeled data specific to infant cries and snoring. To provide a benchmark dataset and thus foster the research of infant cry and snoring detection, this paper introduces the Infant Cry and Snoring Detection (ICSD) dataset, a novel, publicly available dataset specially designed for ICSD tasks. The ICSD comprises three types of subsets: a real strongly labeled subset with event-based labels annotated manually, a weakly labeled subset with only clip-level event annotations, and a synthetic subset generated and labeled with strong annotations. This paper provides a detailed description of the ICSD creation process, including the challenges encountered and the solutions adopted. We offer a comprehensive characterization of the dataset, discussing its limitations and key factors for ICSD usage. Additionally, we conduct extensive experiments on the ICSD dataset to establish baseline systems and offer insights into the main factors when using this dataset for ICSD research. Our goal is to develop a dataset that will be widely adopted by the community as a new open benchmark for future ICSD research.



Abstract:In industry, machine anomalous sound detection (ASD) is in great demand. However, collecting enough abnormal samples is difficult due to the high cost, which boosts the rapid development of unsupervised ASD algorithms. Autoencoder (AE) based methods have been widely used for unsupervised ASD, but suffer from problems including 'shortcut', poor anti-noise ability and sub-optimal quality of features. To address these challenges, we propose a new AE-based framework termed AEGM. Specifically, we first insert an auxiliary classifier into AE to enhance ASD in a multi-task learning manner. Then, we design a group-based decoder structure, accompanied by an adaptive loss function, to endow the model with domain-specific knowledge. Results on the DCASE 2021 Task 2 development set show that our methods achieve a relative improvement of 13.11% and 15.20% respectively in average AUC over the official AE and MobileNetV2 across test sets of seven machines.




Abstract:This report describes the UNISOUND submission for Track1 and Track2 of VoxCeleb Speaker Recognition Challenge 2023 (VoxSRC 2023). We submit the same system on Track 1 and Track 2, which is trained with only VoxCeleb2-dev. Large-scale ResNet and RepVGG architectures are developed for the challenge. We propose a consistency-aware score calibration method, which leverages the stability of audio voiceprints in similarity score by a Consistency Measure Factor (CMF). CMF brings a huge performance boost in this challenge. Our final system is a fusion of six models and achieves the first place in Track 1 and second place in Track 2 of VoxSRC 2023. The minDCF of our submission is 0.0855 and the EER is 1.5880%.




Abstract:Exploiting effective target modeling units is very important and has always been a concern in end-to-end automatic speech recognition (ASR). In this work, we propose a phonetic-assisted multi-target units (PMU) modeling approach, to enhance the Conformer-Transducer ASR system in a progressive representation learning manner. Specifically, PMU first uses the pronunciation-assisted subword modeling (PASM) and byte pair encoding (BPE) to produce phonetic-induced and text-induced target units separately; Then, three new frameworks are investigated to enhance the acoustic encoder, including a basic PMU, a paraCTC and a pcaCTC, they integrate the PASM and BPE units at different levels for CTC and transducer multi-task training. Experiments on both LibriSpeech and accented ASR tasks show that, the proposed PMU significantly outperforms the conventional BPE, it reduces the WER of LibriSpeech clean, other, and six accented ASR testsets by relative 12.7%, 6.0% and 7.7%, respectively.