Seoul National University
Abstract:The goal of most materials discovery is to discover materials that are superior to those currently known. Fundamentally, this is close to extrapolation, which is a weak point for most machine learning models that learn the probability distribution of data. Herein, we develop AI-driven combinatorial chemistry, which is a rule-based inverse molecular designer that does not rely on data. Since our model has the potential to generate all possible molecular structures that can be obtained from combinations of molecular fragments, unknown materials with superior properties can be discovered. We theoretically and empirically demonstrate that our model is more suitable for discovering better materials than probability distribution-learning models. In an experiment aimed at discovering molecules that hit seven target properties, our model discovered 1,315 of all target-hitting molecules and 7,629 of five target-hitting molecules out of 100,000 trials, whereas the probability distribution-learning models failed. To illustrate the performance in actual problems, we also demonstrate that our models work well on two practical applications: discovering protein docking materials and HIV inhibitors.
Abstract:Energy management systems (EMS) are becoming increasingly important in order to utilize the continuously growing curtailed renewable energy. Promising energy storage systems (ESS), such as batteries and green hydrogen should be employed to maximize the efficiency of energy stakeholders. However, optimal decision-making, i.e., planning the leveraging between different strategies, is confronted with the complexity and uncertainties of large-scale problems. Here, we propose a sophisticated deep reinforcement learning (DRL) methodology with a policy-based algorithm to realize the real-time optimal ESS planning under the curtailed renewable energy uncertainty. A quantitative performance comparison proved that the DRL agent outperforms the scenario-based stochastic optimization (SO) algorithm, even with a wide action and observation space. Owing to the uncertainty rejection capability of the DRL, we could confirm a robust performance, under a large uncertainty of the curtailed renewable energy, with a maximizing net profit and stable system. Action-mapping was performed for visually assessing the action taken by the DRL agent according to the state. The corresponding results confirmed that the DRL agent learns the way like what a human expert would do, suggesting reliable application of the proposed methodology.