Abstract:EEG-based recognition of activities and states involves the use of prior neuroscience knowledge to generate quantitative EEG features, which may limit BCI performance. Although neural network-based methods can effectively extract features, they often encounter issues such as poor generalization across datasets, high predicting volatility, and low model interpretability. Hence, we propose a novel lightweight multi-dimensional attention network, called LMDA-Net. By incorporating two novel attention modules designed specifically for EEG signals, the channel attention module and the depth attention module, LMDA-Net can effectively integrate features from multiple dimensions, resulting in improved classification performance across various BCI tasks. LMDA-Net was evaluated on four high-impact public datasets, including motor imagery (MI) and P300-Speller paradigms, and was compared with other representative models. The experimental results demonstrate that LMDA-Net outperforms other representative methods in terms of classification accuracy and predicting volatility, achieving the highest accuracy in all datasets within 300 training epochs. Ablation experiments further confirm the effectiveness of the channel attention module and the depth attention module. To facilitate an in-depth understanding of the features extracted by LMDA-Net, we propose class-specific neural network feature interpretability algorithms that are suitable for event-related potentials (ERPs) and event-related desynchronization/synchronization (ERD/ERS). By mapping the output of the specific layer of LMDA-Net to the time or spatial domain through class activation maps, the resulting feature visualizations can provide interpretable analysis and establish connections with EEG time-spatial analysis in neuroscience. In summary, LMDA-Net shows great potential as a general online decoding model for various EEG tasks.
Abstract:Motor imagery (MI) is a common brain computer interface (BCI) paradigm. EEG is non-stationary with low signal-to-noise, classifying motor imagery tasks of the same participant from different EEG recording sessions is generally challenging, as EEG data distribution may vary tremendously among different acquisition sessions. Although it is intuitive to consider the cross-session MI classification as a domain adaptation problem, the rationale and feasible approach is not elucidated. In this paper, we propose a Siamese deep domain adaptation (SDDA) framework for cross-session MI classification based on mathematical models in domain adaptation theory. The proposed framework can be easily applied to most existing artificial neural networks without altering the network structure, which facilitates our method with great flexibility and transferability. In the proposed framework, domain invariants were firstly constructed jointly with channel normalization and Euclidean alignment. Then, embedding features from source and target domain were mapped into the Reproducing Kernel Hilbert Space (RKHS) and aligned accordingly. A cosine-based center loss was also integrated into the framework to improve the generalizability of the SDDA. The proposed framework was validated with two classic and popular convolutional neural networks from BCI research field (EEGNet and ConvNet) in two MI-EEG public datasets (BCI Competition IV IIA, IIB). Compared to the vanilla EEGNet and ConvNet, the proposed SDDA framework was able to boost the MI classification accuracy by 15.2%, 10.2% respectively in IIA dataset, and 5.5%, 4.2% in IIB dataset. The final MI classification accuracy reached 82.01% in IIA dataset and 87.52% in IIB, which outperformed the state-of-the-art methods in the literature.
Abstract:Alzheimer's disease (AD) is the most prevalent form of dementia. Traditional methods cannot achieve efficient and accurate diagnosis of AD. In this paper, we introduce a novel method based on dynamic functional connectivity (dFC) that can effectively capture changes in the brain. We compare and combine four different types of features including amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), dFC and the adjacency matrix of different brain structures between subjects. We use graph convolution network (GCN) which consider the similarity of brain structure between patients to solve the classification problem of non-Euclidean domains. The proposed method's accuracy and the area under the receiver operating characteristic curve achieved 91.3% and 98.4%. This result demonstrated that our proposed method can be used for detecting AD.