Abstract:This paper provides an algorithm for simulating improper (or noncircular) complex-valued stationary Gaussian processes. The technique utilizes recently developed methods for multivariate Gaussian processes from the circulant embedding literature. The method can be performed in $\mathcal{O}(n\log_2 n)$ operations, where $n$ is the length of the desired sequence. The method is exact, except when eigenvalues of prescribed circulant matrices are negative. We evaluate the performance of the algorithm empirically, and provide a practical example where the method is guaranteed to be exact for all $n$, with an improper fractional Gaussian noise process.