Abstract:We study the expectation propagation (EP) algorithm for symbol detection in massive multiple-input multiple-output (MIMO) systems. The EP detector shows excellent performance but suffers from a high computational complexity due to the matrix inversion, required in each EP iteration to perform marginal inference on a Gaussian system. We propose an inversion-free variant of the EP algorithm by treating inference on the mean and variance as two separate and simpler subtasks: We study the preconditioned conjugate gradient algorithm for obtaining the mean, which can significantly reduce the complexity and increase stability by relying on the Jacobi preconditioner that proves to fit the EP characteristics very well. For the variance, we use a simple approximation based on linear regression of the Gram channel matrix. Numerical studies on the Rayleigh-fading channel and on a realistic 3GPP channel model reveal the efficiency of the proposed scheme, which offers an attractive performance-complexity tradeoff and even outperforms the original EP detector in high multi-user inference cases where the matrix inversion becomes numerically unstable.