Abstract:We address general-shaped clustering problems under very weak parametric assumptions with a two-step hybrid robust clustering algorithm based on trimmed k-means and hierarchical agglomeration. The algorithm has low computational complexity and effectively identifies the clusters also in presence of data contamination. We also present natural generalizations of the approach as well as an adaptive procedure to estimate the amount of contamination in a data-driven fashion. Our proposal outperforms state-of-the-art robust, model-based methods in our numerical simulations and real-world applications related to color quantization for image analysis, human mobility patterns based on GPS data, biomedical images of diabetic retinopathy, and functional data across weather stations.
Abstract:User-generated content (e.g., tweets and profile descriptions) and shared content between users (e.g., news articles) reflect a user's online identity. This paper investigates whether correlations between user-generated and user-shared content can be leveraged for detecting disinformation in online news articles. We develop a multimodal learning algorithm for disinformation detection. The latent representations of news articles and user-generated content allow that during training the model is guided by the profile of users who prefer content similar to the news article that is evaluated, and this effect is reinforced if that content is shared among different users. By only leveraging user information during model optimization, the model does not rely on user profiling when predicting an article's veracity. The algorithm is successfully applied to three widely used neural classifiers, and results are obtained on different datasets. Visualization techniques show that the proposed model learns feature representations of unseen news articles that better discriminate between fake and real news texts.