Abstract:We present a new self-supervised deep-learning-based Ghost Imaging (GI) reconstruction method, which provides unparalleled reconstruction performance for noisy acquisitions among unsupervised methods. We present the supporting mathematical framework and results from theoretical and real data use cases. Self-supervision removes the need for clean reference data while offering strong noise reduction. This provides the necessary tools for addressing signal-to-noise ratio concerns for GI acquisitions in emerging and cutting-edge low-light GI scenarios. Notable examples include micro- and nano-scale x-ray emission imaging, e.g., x-ray fluorescence imaging of dose-sensitive samples. Their applications include in-vivo and in-operando case studies for biological samples and batteries.
Abstract:This article investigates the knowledge transfer from the RuQTopics dataset. This Russian topical dataset combines a large sample number (361,560 single-label, 170,930 multi-label) with extensive class coverage (76 classes). We have prepared this dataset from the "Yandex Que" raw data. By evaluating the RuQTopics - trained models on the six matching classes of the Russian MASSIVE subset, we have proved that the RuQTopics dataset is suitable for real-world conversational tasks, as the Russian-only models trained on this dataset consistently yield an accuracy around 85\% on this subset. We also have figured out that for the multilingual BERT, trained on the RuQTopics and evaluated on the same six classes of MASSIVE (for all MASSIVE languages), the language-wise accuracy closely correlates (Spearman correlation 0.773 with p-value 2.997e-11) with the approximate size of the pretraining BERT's data for the corresponding language. At the same time, the correlation of the language-wise accuracy with the linguistical distance from Russian is not statistically significant.