Abstract:As content generated by Large Language Model (LLM) has grown exponentially, the ability to accurately identify and fingerprint such text has become increasingly crucial. In this work, we introduce a novel black-box approach for fingerprinting LLMs, achieving an impressive 72% accuracy in identifying the correct family of models (Such as Llama, Mistral, Gemma, etc) among a lineup of LLMs. We present an evolutionary strategy that leverages the capabilities of one LLM to discover the most salient features for identifying other LLMs. Our method employs a unique "Hide and Seek" algorithm, where an Auditor LLM generates discriminative prompts, and a Detective LLM analyzes the responses to fingerprint the target models. This approach not only demonstrates the feasibility of LLM-driven model identification but also reveals insights into the semantic manifolds of different LLM families. By iteratively refining prompts through in-context learning, our system uncovers subtle distinctions between model outputs, providing a powerful tool for LLM analysis and verification. This research opens new avenues for understanding LLM behavior and has significant implications for model attribution, security, and the broader field of AI transparency.
Abstract:This study introduces the "Grade Score", a novel metric designed to evaluate the consistency and fairness of Large Language Models (LLMs) when used as multiple-choice judges with respect to order bias and choice consistency. The Grade Score combines Entropy, which measures order bias, and Mode Frequency, which assesses choice stability, offering insights into LLMs' reliability and impartiality. The study explores techniques such as prompt engineering and option sampling strategies to optimize the Grade Score, demonstrating their effectiveness in enhancing LLMs' performance. Results showcase varying performances among LLMs with respect to prompts and highlight the positive impact of including irrelevant options. The study also identifies an emergent behavior in instruction-following models, where they adapt to instructions targeting specific biases, demonstrating their adaptability. The Grade Score facilitates comparisons between LLMs and encourages ongoing research towards optimizing their decision-making processes, with potential implications for improving their reliability and fairness in various applications. All code is available on GitHub https://github.com/IoDmitri/GradeLab