Abstract:This paper introduces AIDetx, a novel method for detecting machine-generated text using data compression techniques. Traditional approaches, such as deep learning classifiers, often suffer from high computational costs and limited interpretability. To address these limitations, we propose a compression-based classification framework that leverages finite-context models (FCMs). AIDetx constructs distinct compression models for human-written and AI-generated text, classifying new inputs based on which model achieves a higher compression ratio. We evaluated AIDetx on two benchmark datasets, achieving F1 scores exceeding 97% and 99%, respectively, highlighting its high accuracy. Compared to current methods, such as large language models (LLMs), AIDetx offers a more interpretable and computationally efficient solution, significantly reducing both training time and hardware requirements (e.g., no GPUs needed). The full implementation is publicly available at https://github.com/AIDetx/AIDetx.
Abstract:The artistic community is increasingly relying on automatic computational analysis for authentication and classification of artistic paintings. In this paper, we identify hidden patterns and relationships present in artistic paintings by analysing their complexity, a measure that quantifies the sum of characteristics of an object. Specifically, we apply Normalized Compression (NC) and the Block Decomposition Method (BDM) to a dataset of 4,266 paintings from 91 authors and examine the potential of these information-based measures as descriptors of artistic paintings. Both measures consistently described the equivalent types of paintings, authors, and artistic movements. Moreover, combining the NC with a measure of the roughness of the paintings creates an efficient stylistic descriptor. Furthermore, by quantifying the local information of each painting, we define a fingerprint that describes critical information regarding the artists' style, their artistic influences, and shared techniques. More fundamentally, this information describes how each author typically composes and distributes the elements across the canvas and, therefore, how their work is perceived. Finally, we demonstrate that regional complexity and two-point height difference correlation function are useful auxiliary features that improve current methodologies in style and author classification of artistic paintings. The whole study is supported by an extensive website (http://panther.web.ua.pt) for fast author characterization and authentication.