Abstract:Robotic manipulators operating in dynamic and uncertain environments require efficient motion planning to navigate obstacles while maintaining smooth trajectories. Velocity Potential Field (VPF) planners offer real-time adaptability but struggle with complex constraints and local minima, leading to suboptimal performance in cluttered spaces. Traditional approaches rely on pre-planned trajectories, but frequent recomputation is computationally expensive. This study proposes a hybrid motion planning approach, integrating an improved VPF with a Sampling-Based Motion Planner (SBMP). The SBMP ensures optimal path generation, while VPF provides real-time adaptability to dynamic obstacles. This combination enhances motion planning efficiency, stability, and computational feasibility, addressing key challenges in uncertain environments such as warehousing and surgical robotics.