Abstract:Lane-free traffic environments allow vehicles to better harness the lateral capacity of the road without being restricted to lane-keeping, thereby increasing the traffic flow rates. As such, we have a distinct and more challenging setting for autonomous driving. In this work, we consider a Monte-Carlo Tree Search (MCTS) planning approach for single-agent autonomous driving in lane-free traffic, where the associated Markov Decision Process we formulate is influenced from existing approaches tied to reinforcement learning frameworks. In addition, MCTS is equipped with a pre-trained neural network (NN) that guides the selection phase. This procedure incorporates the predictive capabilities of NNs for a more informed tree search process under computational constraints. In our experimental evaluation, we consider metrics that address both safety (through collision rates) and efficacy (through measured speed). Then, we examine: (a) the influence of isotropic state information for vehicles in a lane-free environment, resulting in nudging behaviour--vehicles' policy reacts due to the presence of faster tailing ones, (b) the acceleration of performance for the NN-guided variant of MCTS, and (c) the trade-off between computational resources and solution quality.
Abstract:In this paper we present a novel approach for multiagent decision making in dynamic environments based on Factor Graphs and the Max-Sum algorithm, considering asynchronous variable reassignments and distributed message-passing among agents. Motivated by the challenging domain of lane-free traffic where automated vehicles can communicate and coordinate as agents, we propose a more realistic communication framework for Factor Graph formulations that satisfies the above-mentioned restrictions, along with Conditional Max-Sum: an extension of Max-Sum with a revised message-passing process that is better suited for asynchronous settings. The overall application in lane-free traffic can be viewed as a hybrid system where the Factor Graph formulation undertakes the strategic decision making of vehicles, that of desired lateral alignment in a coordinated manner; and acts on top of a rule-based method we devise that provides a structured representation of the lane-free environment for the factors, while also handling the underlying control of vehicles regarding core operations and safety. Our experimental evaluation showcases the capabilities of the proposed framework in problems with intense coordination needs when compared to a domain-specific baseline without communication, and an increased adeptness of Conditional Max-Sum with respect to the standard algorithm.