Abstract:This study presents a novel approach for roof detail extraction and vectorization using remote sensing images. Unlike previous geometric-primitive-based methods that rely on the detection of corners, our method focuses on edge detection as the primary mechanism for roof reconstruction, while utilizing geometric relationships to define corners and faces. We adapt the YOLOv8 OBB model, originally designed for rotated object detection, to extract roof edges effectively. Our method demonstrates robustness against noise and occlusion, leading to precise vectorized representations of building roofs. Experiments conducted on the SGA and Melville datasets highlight the method's effectiveness. At the raster level, our model outperforms the state-of-the-art foundation segmentation model (SAM), achieving a mIoU between 0.85 and 1 for most samples and an ovIoU close to 0.97. At the vector level, evaluation using the Hausdorff distance, PolyS metric, and our raster-vector-metric demonstrates significant improvements after polygonization, with a close approximation to the reference data. The method successfully handles diverse roof structures and refines edge gaps, even on complex roof structures of new, excluded from training datasets. Our findings underscore the potential of this approach to address challenges in automatic roof structure vectorization, supporting various applications such as urban terrain reconstruction.
Abstract:This paper presents an analysis of utilizing elevation data to aid outdoor point cloud semantic segmentation through existing machine-learning networks in remote sensing, specifically in urban, built-up areas. In dense outdoor point clouds, the receptive field of a machine learning model may be too small to accurately determine the surroundings and context of a point. By computing Digital Terrain Models (DTMs) from the point clouds, we extract the relative elevation feature, which is the vertical distance from the terrain to a point. RandLA-Net is employed for efficient semantic segmentation of large-scale point clouds. We assess its performance across three diverse outdoor datasets captured with varying sensor technologies and sensor locations. Integration of relative elevation data leads to consistent performance improvements across all three datasets, most notably in the Hessigheim dataset, with an increase of 3.7 percentage points in average F1 score from 72.35% to 76.01%, by establishing long-range dependencies between ground and objects. We also explore additional local features such as planarity, normal vectors, and 2D features, but their efficacy varied based on the characteristics of the point cloud. Ultimately, this study underscores the important role of the non-local relative elevation feature for semantic segmentation of point clouds in remote sensing applications.