Abstract:Fingerprint recognition remains one of the most reliable biometric technologies due to its high accuracy and uniqueness. Traditional systems rely on contact-based scanners, which are prone to issues such as image degradation from surface contamination and inconsistent user interaction. To address these limitations, contactless fingerprint recognition has emerged as a promising alternative, providing non-intrusive and hygienic authentication. This study evaluates the impact of image enhancement tech-niques on the performance of pre-trained deep learning models using transfer learning for touchless fingerprint recognition. The IIT-Bombay Touchless and Touch-Based Fingerprint Database, containing data from 200 subjects, was employed to test the per-formance of deep learning architectures such as VGG-16, VGG-19, Inception-V3, and ResNet-50. Experimental results reveal that transfer learning methods with fingerprint image enhance-ment (indirect method) significantly outperform those without enhancement (direct method). Specifically, VGG-16 achieved an accuracy of 98% in training and 93% in testing when using the enhanced images, demonstrating superior performance compared to the direct method. This paper provides a detailed comparison of the effectiveness of image enhancement in improving the accuracy of transfer learning models for touchless fingerprint recognition, offering key insights for developing more efficient biometric systems.