Abstract:Localizing oneself during endoscopic procedures can be problematic due to the lack of distinguishable textures and landmarks, as well as difficulties due to the endoscopic device such as a limited field of view and challenging lighting conditions. Expert knowledge shaped by years of experience is required for localization within the human body during endoscopic procedures. In this work, we present a deep learning method based on anatomy recognition, that constructs a surgical path in an unsupervised manner from surgical videos, modelling relative location and variations due to different viewing angles. At inference time, the model can map an unseen video's frames on the path and estimate the viewing angle, aiming to provide guidance, for instance, to reach a particular destination. We test the method on a dataset consisting of surgical videos of transsphenoidal adenomectomies, as well as on a synthetic dataset. An online tool that lets researchers upload their surgical videos to obtain anatomy detections and the weights of the trained YOLOv7 model are available at: https://surgicalvision.bmic.ethz.ch.
Abstract:Advanced minimally invasive neurosurgery navigation relies mainly on Magnetic Resonance Imaging (MRI) guidance. MRI guidance, however, only provides pre-operative information in the majority of the cases. Once the surgery begins, the value of this guidance diminishes to some extent because of the anatomical changes due to surgery. Guidance with live image feedback coming directly from the surgical device, e.g., endoscope, can complement MRI-based navigation or be an alternative if MRI guidance is not feasible. With this motivation, we present a method for live image-only guidance leveraging a large data set of annotated neurosurgical videos.First, we report the performance of a deep learning-based object detection method, YOLO, on detecting anatomical structures in neurosurgical images. Second, we present a method for generating neurosurgical roadmaps using unsupervised embedding without assuming exact anatomical matches between patients, presence of an extensive anatomical atlas, or the need for simultaneous localization and mapping. A generated roadmap encodes the common anatomical paths taken in surgeries in the training set. At inference, the roadmap can be used to map a surgeon's current location using live image feedback on the path to provide guidance by being able to predict which structures should appear going forward or backward, much like a mapping application. Even though the embedding is not supervised by position information, we show that it is correlated to the location inside the brain and on the surgical path. We trained and evaluated the proposed method with a data set of 166 transsphenoidal adenomectomy procedures.