Abstract:Activation functions play a decisive role in determining the capacity of Deep Neural Networks as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit broke the taboo for a number of applications. In this paper, a Convolutional Neural Network model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.
Abstract:Many industrial and real life problems exhibit highly nonlinear periodic behaviors and the conventional methods may fall short of finding their analytical or closed form solutions. Such problems demand some cutting edge computational tools with increased functionality and reduced cost. Recently, deep neural networks have gained massive research interest due to their ability to handle large data and universality to learn complex functions. In this work, we put forward a methodology based on deep neural networks with responsive layers structure to deal nonlinear oscillations in microelectromechanical systems. We incorporated some oscillatory and non oscillatory activation functions such as growing cosine unit known as GCU, Sine, Mish and Tanh in our designed network to have a comprehensive analysis on their performance for highly nonlinear and vibrational problems. Integrating oscillatory activation functions with deep neural networks definitely outperform in predicting the periodic patterns of underlying systems. To support oscillatory actuation for nonlinear systems, we have proposed a novel oscillatory activation function called Amplifying Sine Unit denoted as ASU which is more efficient than GCU for complex vibratory systems such as microelectromechanical systems. Experimental results show that the designed network with our proposed activation function ASU is more reliable and robust to handle the challenges posed by nonlinearity and oscillations. To validate the proposed methodology, outputs of our networks are being compared with the results from Livermore solver for ordinary differential equation called LSODA. Further, graphical illustrations of incurred errors are also being presented in the work.