Abstract:We introduce multimodal story summarization by leveraging TV episode recaps - short video sequences interweaving key story moments from previous episodes to bring viewers up to speed. We propose PlotSnap, a dataset featuring two crime thriller TV shows with rich recaps and long episodes of 40 minutes. Story summarization labels are unlocked by matching recap shots to corresponding sub-stories in the episode. We propose a hierarchical model TaleSumm that processes entire episodes by creating compact shot and dialog representations, and predicts importance scores for each video shot and dialog utterance by enabling interactions between local story groups. Unlike traditional summarization, our method extracts multiple plot points from long videos. We present a thorough evaluation on story summarization, including promising cross-series generalization. TaleSumm also shows good results on classic video summarization benchmarks.
Abstract:Movie story analysis requires understanding characters' emotions and mental states. Towards this goal, we formulate emotion understanding as predicting a diverse and multi-label set of emotions at the level of a movie scene and for each character. We propose EmoTx, a multimodal Transformer-based architecture that ingests videos, multiple characters, and dialog utterances to make joint predictions. By leveraging annotations from the MovieGraphs dataset, we aim to predict classic emotions (e.g. happy, angry) and other mental states (e.g. honest, helpful). We conduct experiments on the most frequently occurring 10 and 25 labels, and a mapping that clusters 181 labels to 26. Ablation studies and comparison against adapted state-of-the-art emotion recognition approaches shows the effectiveness of EmoTx. Analyzing EmoTx's self-attention scores reveals that expressive emotions often look at character tokens while other mental states rely on video and dialog cues.
Abstract:There are various algorithms and methodologies used for automated screening of cervical cancer by segmenting and classifying cervical cancer cells into different categories. This study presents a critical review of different research papers published that integrated AI methods in screening cervical cancer via different approaches analyzed in terms of typical metrics like dataset size, drawbacks, accuracy etc. An attempt has been made to furnish the reader with an insight of Machine Learning algorithms like SVM (Support Vector Machines), GLCM (Gray Level Co-occurrence Matrix), k-NN (k-Nearest Neighbours), MARS (Multivariate Adaptive Regression Splines), CNNs (Convolutional Neural Networks), spatial fuzzy clustering algorithms, PNNs (Probabilistic Neural Networks), Genetic Algorithm, RFT (Random Forest Trees), C5.0, CART (Classification and Regression Trees) and Hierarchical clustering algorithm for feature extraction, cell segmentation and classification. This paper also covers the publicly available datasets related to cervical cancer. It presents a holistic review on the computational methods that have evolved over the period of time, in chronological order in detection of malignant cells.