I3S
Abstract:We propose Interactive Differential Evolution (IDE) based on paired comparisons for reducing user fatigue and evaluate its convergence speed in comparison with Interactive Genetic Algorithms (IGA) and tournament IGA. User interface and convergence performance are two big keys for reducing Interactive Evolutionary Computation (IEC) user fatigue. Unlike IGA and conventional IDE, users of the proposed IDE and tournament IGA do not need to compare whole individuals each other but compare pairs of individuals, which largely decreases user fatigue. In this paper, we design a pseudo-IEC user and evaluate another factor, IEC convergence performance, using IEC simulators and show that our proposed IDE converges significantly faster than IGA and tournament IGA, i.e. our proposed one is superior to others from both user interface and convergence performance points of view.
Abstract:In this paper, we describe a new algorithm that consists in combining an eye-tracker for minimizing the fatigue of a user during the evaluation process of Interactive Evolutionary Computation. The approach is then applied to the Interactive One-Max optimization problem.
Abstract:In this paper, we firstly present what is Interactive Evolutionary Computation (IEC) and rapidly how we have combined this artificial intelligence technique with an eye-tracker for visual optimization. Next, in order to correctly parameterize our application, we present results from applying data mining techniques on gaze information coming from experiments conducted on about 80 human individuals.