Abstract:Machine learning has driven an exponential increase in computational demand, leading to massive data centers that consume significant amounts of energy and contribute to climate change. This makes sustainable data center control a priority. In this paper, we introduce SustainDC, a set of Python environments for benchmarking multi-agent reinforcement learning (MARL) algorithms for data centers (DC). SustainDC supports custom DC configurations and tasks such as workload scheduling, cooling optimization, and auxiliary battery management, with multiple agents managing these operations while accounting for the effects of each other. We evaluate various MARL algorithms on SustainDC, showing their performance across diverse DC designs, locations, weather conditions, grid carbon intensity, and workload requirements. Our results highlight significant opportunities for improvement of data center operations using MARL algorithms. Given the increasing use of DC due to AI, SustainDC provides a crucial platform for the development and benchmarking of advanced algorithms essential for achieving sustainable computing and addressing other heterogeneous real-world challenges.
Abstract:As machine learning workloads significantly increase energy consumption, sustainable data centers with low carbon emissions are becoming a top priority for governments and corporations worldwide. This requires a paradigm shift in optimizing power consumption in cooling and IT loads, shifting flexible loads based on the availability of renewable energy in the power grid, and leveraging battery storage from the uninterrupted power supply in data centers, using collaborative agents. The complex association between these optimization strategies and their dependencies on variable external factors like weather and the power grid carbon intensity makes this a hard problem. Currently, a real-time controller to optimize all these goals simultaneously in a dynamic real-world setting is lacking. We propose a Data Center Carbon Footprint Reduction (DC-CFR) multi-agent Reinforcement Learning (MARL) framework that optimizes data centers for the multiple objectives of carbon footprint reduction, energy consumption, and energy cost. The results show that the DC-CFR MARL agents effectively resolved the complex interdependencies in optimizing cooling, load shifting, and energy storage in real-time for various locations under real-world dynamic weather and grid carbon intensity conditions. DC-CFR significantly outperformed the industry standard ASHRAE controller with a considerable reduction in carbon emissions (14.5%), energy usage (14.4%), and energy cost (13.7%) when evaluated over one year across multiple geographical regions.
Abstract:The increasing global emphasis on sustainability and reducing carbon emissions is pushing governments and corporations to rethink their approach to data center design and operation. Given their high energy consumption and exponentially large computational workloads, data centers are prime candidates for optimizing power consumption, especially in areas such as cooling and IT energy usage. A significant challenge in this pursuit is the lack of a configurable and scalable thermal data center model that offers an end-to-end pipeline. Data centers consist of multiple IT components whose geometric configuration and heat dissipation make thermal modeling difficult. This paper presents PyDCM, a customizable Data Center Model implemented in Python, that allows users to create unique configurations of IT equipment with custom server specifications and geometric arrangements of IT cabinets. The use of vectorized thermal calculations makes PyDCM orders of magnitude faster (30 times) than current Energy Plus modeling implementations and scales sublinearly with the number of CPUs. Also, PyDCM enables the use of Deep Reinforcement Learning via the Gymnasium wrapper to optimize data center cooling and offers a user-friendly platform for testing various data center design prototypes.
Abstract:In the last decade, deep learning has achieved great success in machine learning tasks where the input data is represented with different levels of abstractions. Driven by the recent research in reinforcement learning using deep neural networks, we explore the feasibility of designing a learning model based on expert behaviour for complex, multidimensional tasks where reward function is not available. We propose a novel method for apprenticeship learning based on the previous research on supervised learning techniques in reinforcement learning. Our method is applied to video frames from Atari games in order to teach an artificial agent to play those games. Even though the reported results are not comparable with the state-of-the-art results in reinforcement learning, we demonstrate that such an approach has the potential to achieve strong performance in the future and is worthwhile for further research.