Abstract:Although recent mainstream waveform-domain end-to-end (E2E) neural audio codecs achieve impressive coded audio quality with a very low bitrate, the quality gap between the coded and natural audio is still significant. A generative adversarial network (GAN) training is usually required for these E2E neural codecs because of the difficulty of direct phase modeling. However, such adversarial learning hinders these codecs from preserving the original phase information. To achieve human-level naturalness with a reasonable bitrate, preserve the original phase, and get rid of the tricky and opaque GAN training, we develop a score-based diffusion post-filter (SPF) in the complex spectral domain and combine our previous AudioDec with the SPF to propose ScoreDec, which can be trained using only spectral and score-matching losses. Both the objective and subjective experimental results show that ScoreDec with a 24~kbps bitrate encodes and decodes full-band 48~kHz speech with human-level naturalness and well-preserved phase information.
Abstract:A good audio codec for live applications such as telecommunication is characterized by three key properties: (1) compression, i.e.\ the bitrate that is required to transmit the signal should be as low as possible; (2) latency, i.e.\ encoding and decoding the signal needs to be fast enough to enable communication without or with only minimal noticeable delay; and (3) reconstruction quality of the signal. In this work, we propose an open-source, streamable, and real-time neural audio codec that achieves strong performance along all three axes: it can reconstruct highly natural sounding 48~kHz speech signals while operating at only 12~kbps and running with less than 6~ms (GPU)/10~ms (CPU) latency. An efficient training paradigm is also demonstrated for developing such neural audio codecs for real-world scenarios. Both objective and subjective evaluations using the VCTK corpus are provided. To sum up, AudioDec is a well-developed plug-and-play benchmark for audio codec applications.