Abstract:In breast cancer detection and diagnosis, the longitudinal analysis of mammogram images is crucial. Contemporary models excel in detecting temporal imaging feature changes, thus enhancing the learning process over sequential imaging exams. Yet, the resilience of these longitudinal models against adversarial attacks remains underexplored. In this study, we proposed a novel attack method that capitalizes on the feature-level relationship between two sequential mammogram exams of a longitudinal model, guided by both cross-entropy loss and distance metric learning, to achieve significant attack efficacy, as implemented using attack transferring in a black-box attacking manner. We performed experiments on a cohort of 590 breast cancer patients (each has two sequential mammogram exams) in a case-control setting. Results showed that our proposed method surpassed several state-of-the-art adversarial attacks in fooling the diagnosis models to give opposite outputs. Our method remained effective even if the model was trained with the common defending method of adversarial training.
Abstract:Adversarial data can lead to malfunction of deep learning applications. It is essential to develop deep learning models that are robust to adversarial data while accurate on standard, clean data. In this study, we proposed a novel adversarially robust feature learning (ARFL) method for a real-world application of breast cancer diagnosis. ARFL facilitates adversarial training using both standard data and adversarial data, where a feature correlation measure is incorporated as an objective function to encourage learning of robust features and restrain spurious features. To show the effects of ARFL in breast cancer diagnosis, we built and evaluated diagnosis models using two independent clinically collected breast imaging datasets, comprising a total of 9,548 mammogram images. We performed extensive experiments showing that our method outperformed several state-of-the-art methods and that our method can enhance safer breast cancer diagnosis against adversarial attacks in clinical settings.
Abstract:Long COVID is a general term of post-acute sequelae of COVID-19. Patients with long COVID can endure long-lasting symptoms including fatigue, headache, dyspnea and anosmia, etc. Identifying the cohorts with severe long-term complications in COVID-19 could benefit the treatment planning and resource arrangement. However, due to the heterogeneous phenotype presented in long COVID patients, it is difficult to predict their outcomes from their longitudinal data. In this study, we proposed a spatiotemporal attention mechanism to weigh feature importance jointly from the temporal dimension and feature space. Considering that medical examinations can have interchangeable orders in adjacent time points, we restricted the learning of short-term dependency with a Local-LSTM and the learning of long-term dependency with the joint spatiotemporal attention. We also compared the proposed method with several state-of-the-art methods and a method in clinical practice. The methods are evaluated on a hard-to-acquire clinical dataset of patients with long COVID. Experimental results show the Local-LSTM with joint spatiotemporal attention outperformed related methods in outcome prediction. The proposed method provides a clinical tool for the severity assessment of long COVID.